Local Injection of Hyaluronidase in Increasing Skin Flap Survival: An Experimental Study

Luiz Alberto Soares Pimentel, MD¹
Regina Coeli dos Santos Goldenberg, MD²

2] Associate Professor - Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - Brazil.

Keywords: Hyaluronidase and skin flaps; skin flaps survival; skin flaps.

ABSTRACT

Previously, clinical observations have suggested that local injection of hyaluronidase (HDL) increase skin flaps survival. We have now extended these observations, analyzing the effects of HDL in rabbit skin flaps. Therefore, dorso-lateral, cranially pedicled skin flaps were treated with 1 ml HDL (200 U/ml), treated flaps) and compared, after 7 days of surgery, with flaps injected with 1 ml saline (control 1) or no injected at all (control 2). The efficiency of HDL was confirmed by the percentage of necrosis in the flap area (evaluated by tissue color and capillary filling), which achieved 1.47% ± 2.91, 27.64% ± 25.89 and 30.14% ± 27.96 in the treated groups, control 1 and control 2 flaps respectively. We conclude that HDL is capable of preventing skin flaps necrosis.

INTRODUCTION

The survival of large skin flaps is a goal to be reached and many surgical investigators have studied the action of many substances, like vasoactive drugs, antioxidants, corticosteroids and enzymes including hyaluronidase.

Since 1929 hyaluronidase, the “spreading factor”, has had its pharmacologic properties thoroughly studied. It has been identified as a mucolytic enzyme, whose main action is depolymerization and hydrolyzation of hyaluronic acid, a polysaccharide which is an essential...
component of intercellular ground substance(20).

In the early fifties, hyaluronidase was clinically used for the first time in intravenous high doses to treat patients with cerebral edema(25). Soon afterwards, the enzyme was used in cases of acute myocardial infarct, apparently acting by reducing intramyocardial edema(18, 19). In 1988 important actions of hyaluronidase upon extracellular matrix macromolecules were shown in an experimental model using the rabbit skin(18). In this work, the intradermal injection of the enzyme degraded dermal proteoglycans and, due to the endoglycosaminidase activity, dissociated collagen bundles, which was followed by resynthesis of the initially degraded proteoglycans. On the other hand, the elastic fibers network was not altered.

Recently, the enzyme was also used yet in hypodermolysis in patients with advanced cancer(5).

Several studies using either subcutaneous or intradermal hyaluronidase in areas or around areas of venous extravasation of toxic substances like nafcillin(26), CaCl\textsubscript{2}(24), hypertonic saline and sodium tetradecyl-sulfate used in sclerotherapy(27, 28), vinca-alcaloids and another cytotoxic drugs(3, 4) demonstrated the effectiveness of hyaluronidase in preventing necrosis.

In the present paper hyaluronidase was injected directly in the skin and subcutaneous tissue of large skin flaps in an attempt to increase the connective tissue permeability, what was supposed to increase the flow of interstitial fluid to the flap proximal end. This was expected to improve the washout of metabolites from

Fig. 1 - The inner surface of an undermined flap.

Fig. 1 - Superfície interna de um retalho descolado.

Fig. 2 - The flap sutured in its bed.

Fig. 2 - O retalho suturado em seu leito original.

Fig. 3 - Injection of HLD solution in the two distal thirds of a treated flap.

Fig. 3 - Injeção da solução de HLD nos 2 terços distais de um retalho tratado.

Fig. 4 - Injection of saline solution in a control-1 contralateral flap.

Fig. 4 - Injeção de soro fisiológico em um retalho controle-1 contralateral.
Local Injection of Hyaluronidase in Increasing Skin Flap Survival: An Experimental Study

MATERIAL AND METHODS

Eighteen New Zealand female rabbits, weighing between 2500g - 3000g were used. They were maintained under equal conditions. Anesthesia consisted of intramuscular administration of ketamine (25mg/kg), diazepean (1mg/kg) and atropine (1ml), followed by shaving of skin and antisepsis with povidine and alcohol. The experimental model was a latero-dorsal randomized skin flap with a cranial pedicle measuring 12.5 cm x 2.5 cm. Each flap was undermined and replaced in its original site and anchored with a continuous 3.0 monofilament nylon suture (Figs. 1 & 2), the flap extremity to more distant areas with normal vasculature, which might lead to prevention of necrosis of the flap. In the studied model, hyaluronidase proved to be an effective treatment in the prevention of necrosis.

The study was divided into 2 groups of 9 animals. Group I received two flaps in each animal in the same surgical act. One flap, randomly selected, was injected with the enzyme (HLD 200 U/1ml/day - treated flaps) and the contralateral flap injected with saline solution (1 ml/day - control 1 flaps) (Figs. 3 & 4). Approximately 1 ml of the HLD solution, was injected over the two distal thirds of the flap divided in 0.1 ml intradermal injections, and in the same manner with the saline solution in the other side. The injections were carried over during seven days, over periods of 24 hours. In group II (control 2 flaps) each animal had one flap, observed during seven days without any type of treatment.

The colour and capillary filling of the flaps were daily observed.

On the seventh postoperative day, the necrotic and surviving area were measured.
STATISTICAL ANALYSIS

The paired Student's t-test was used for the statistical analysis comparing the difference in survival of the flaps between the treated and control 1 flaps. In the case of control 1 vs control 2 comparison, the non-paired Student's t-test was applied.

Results were expressed as mean ± standard deviation and were considered significant at a 95% confidence level (p < 0.05).
Local Injection of Hyaluronidase in Increasing Skin Flap Survival: An Experimental Study

RESULTS

The aim of this work was to evaluate the effects of hyaluronidase on the survival of skin flaps.

For this purpose, controlled experiments were carried out in rabbits in which large skin flaps were injected with fixed concentration of the enzyme and checked at variable periods of time for the presence of necrosis.

Different non-paired control conditions were adopted: flaps injected with saline, named control 1 flaps (or C1), and non-injected flaps, referred to collectively as control 2 flaps (or C2).

Both necrosis incidence as well as necrosis extension were undistinguishable between C1 and C2, as presented in Table I and exemplified in (Fig. 5).

In experiments in which flaps were treated with HLD (paired with C1 and C2) incidence as well as the extent of necrotic lesions were dramatically decreased as exemplified in Fig. 6 and represented graphically in Fig. 8 (data in Table I).

Only two rabbits out of 9 tested presented necrosis of their third ending, in approximately 6% of its length (Fig. 6). In additional cases, color alterations reversed, followed by flap survival and recovery during the first week (Fig. 6). Epidermolysis, commonly taken as a superficial necrosis, was observed once in treated flaps, and followed by a cutaneous recovery after two weeks (Fig. 7).

DISCUSSION

Local necrosis is known to represent a common consequence of plastic surgery. Although efforts have concentrated on investigation of possible pharmacological and/or surgical alternatives to circumvent it in different experimental and clinical models, as confirmed in the scientific literature(1, 2, 7, 13, 17), a safe and efficient maneuver able to prevent acute necrosis of large skin-flaps is yet to be developed.

Hyaluronidase is an enzyme that reduces or prevents tissue injury presumably by causing the rapid diffusion of extravasated fluids to distant areas(3, 4, 24, 26, 27, 28), thus allowing a better turnover of nutrients. The rapid diffusion of fluids is been attributed to a temporary degradation of tissue cement by hyaluronidase(26), leading to a capillary and interstitial leakage of nutrients and metabolites and increasing the rate of cell nutrition.

Our study analyzed the effects of hyalu-
ronidase on rabbit skin flap after 7 days of surgery. The data showed a significant reduction in the incidence of necrosis in the treated (hyaluronidase) group as compared with the control 1 (saline) group, suggesting that hyaluronidase was effective in improving flap survival. The possibility that the protective effects could be due to saline itself, currently employed as a vehicle to hyaluronidase, was clearly refuted as no significant necrosis prevention was detected in our experimental model and which prevalence (% necrosis, Table I) was comparable to that determined in the non-injected group (C2).

Moreover, the present experimental results substantiate preliminary clinical observations showing that hyaluronidase was effective in improving the survival of larger skin flaps. Although the biochemical and histological basis for hyaluronidase protective effects are yet to be clarified, we believe that the clinical employment of this enzyme in Plastic Surgery must be regarded seriously.

REFERENCES

Local Injection of Hyaluronidase in Increasing Skin Flap Survival: An Experimental Study

1990; 80:2, 111-115.

